
Green's function; gij(x,y; ~,n), elements of the Green's matrix; ~(x,y), �9 density; li, thermal 
conductivity coefficlents. 
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DETERMINATION OF THE GEC~IETRIC-OPTICS COEFFICIENTS OF THERMAL 

RADIATION BY THE MONTE CARLO METHOD 

A. V. Bushinskii UDC 536.3 

Algorithms of the Monte Carlo method to determine the governing angular coeffi- 
cients for different formulations of the radiant exchange problem under condi- 
tions of a diathermal medium and results of their verification by means of exact 
solutions are presented. 

The method of statistical tests, or the Monte Carlo method [i-6], has recently been ap- 
plied quite frequently to the solution of applied radiant heat-transfer problems. In the 
case of systems filled with a diathermal medium, this method is used principally for the 
direct determination of the geometric-optics characteristics of the radiation field [2-5]. 
Let us examine�9 the question of applying the Monte Carlo method to obtain directly one such 
characteristic, the governing angular coefficient [7, 8]. Let us take the usual assumptions 
about the diffuseness of the radiation and the grayness and opacity of the system boundaries. 
Let us limit ourselves to finding the mean value of the coefficient of greatest interest in 
engineering practice. Let us assume that the system under investigation consists of a finite 
number of zones (bodies), within each of whose limits the given optical and energetic char- 
acteristics are constant from point to point. 

The possibility of a statistical modeling of the governing angular coefficient is based 
on its representation as an infinite functional series [7] (whose first member is the geo- 
metric angular coefficient, and the next terms of the series take into account the first, 
second, and all the remaining reflections) which expresses the method of multiple reflections 
explicitly. Therefore, the desired coefficient can be determined by observing the fate of 
the different rays in time. The probabilistic treatment of the mean governing angular coef- 
ficient ~ik as a characteristic of the fraction of proper radiation of the zone i reaching 
the zone k directly and taking into account all the re-reflections in the system is also used 
in constructing the algorithm of the Monte Carlo method. 

The field of governing angular coefficients is ordinarily found from the solution of in- 
tegral equations of the resolvent of the initial integral equations of radiation transfer. 
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The Monte  C a r l o  m e t h o d ,  w h i c h  p e r m i t s  t h e  d e t e r m i n a t i o n  o f  t h e s e  c o e f f i c i e n t s ,  i s  s u b s t a n t i a l -  
l y  an approximate method of solving the equations of the resolvent. In particular, in the 
case of diffuse reflection on the boundaries, the system of integral equations for the mean 
resolving angular coefficients becomes [7, 9] 

(Dih" ffi Rj cp(~j, Fi)tD(2~j, F~)dFN~j= tpm (1)  

i ~1 Fj 

(i, k = l ,  2 . . . .  , n). 

The solution obtained by the Monte Carlo method has the exact solution of (i) as limit 
if the hypotheses used in deriving the integral equations and in the Monte Carlo method are 
equivalent. For example, the very same geometric configuration can be described either by a 
field of local geometric angular coefficients [in the integral equations (I)] or by analytic 
equations af the system surface (in the Monte Carlo method). Let us note that the latter 
description is considerably simpler. 

In practice, the system of integral equations (I) is approximated in the majority of 
cases by a governing system of linear algebraic equations [7]: 

n 

O~k--~Rj~ucDjh = ~i~ (6 k = 1, 2 . . . . .  n). 
j=l 

(2) 

The approximate solutions obtained from (2) can contain a noticeable error, whose determina- 
tion is fraught with considerable difficulty [9, i0]. The complexity in estimating the error 
is inherent also in the majority of other numerical methods to solve the integral equations. 

The accuracy of the angular coefficients found by the Monte Carlo method is usually esti- 
mated on the basis of parameters of the normal probability distribution law [i, 2] by start- 
ing from the Moivre--Laplace theorem [ii]. This estimate shows that, for example, the number 
of histories should be about 25,000 for a confidence not below 0.9 in the result, and 50,000 
for a confidence not below 0.97, to obtain an absolute error in the geometric angular coeffi- 
cient of 0.005 which is acceptable in technical problems. It can be expected that the error 
in the quantity Ck~ik in determining the governing angular coefficient will correspond to the 
mentioned regularity, including the numerical example presented. 

The fundamentals of constructing algorithms of the Monte Carlo method to find directly 
the governing angular coefficients for different formulations of the radiant heat-exchange 
problem in systems filled with a diathermal medium are elucidated below and the verification 
of these algorithms, in the form of programs for the "Minsk-2" electronic digital computer, 
is carried out by means of exact particular solutions. 

i. The Fundamental Formulation of the Problem for a Diffuse 
Law of Radiant Flux Reflection by the System Boundaries 

This formulation is characterized by giving the temperature field on the boundaries, and 
the integral equation (I) corresponds to it completely. 

A "packet" of particles of unit "weight" is emitted from a random radiating point of the 
chosen body in a random direction drawn in conformity with Lambert's law. Upon meeting the 
system boundaries, a fraction of the particles, equal to the emissivity of the boundary body, 
is absorbed and the remaining particles in the packet follow jointly in a newly selected ran- 
dom direction. Upon achievement of a definite level of packet weight (0.001, for example), 
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Fig. 2. Influence of surface emissivity on the mean governing angular coefficients 
of a tubular system (s/d = 2, e/d = 0.5, �9 ~i = e2 = es = e); curves according to (2): 
I) ~21; 2) ~z2; points according to the Monte Carlo method for diffuse (a) and spec- 
ular (b) reflection laws (N2 = 50,000). 

Fig. 3. Dependence of the mean governing angular coefficient on the relative tube 
spacing and the relative distance between the tubes and the masonry; e/d = 0.5: i) 
exact solution [i0], a) Monte Carlo method (N2 = 50,000), b) the same, specular re- 
flection; e/d = 0.667: c) light modeling method [i0], d) Monte Carlo method (N2 = 
50,000); e/d =�9 2) exact solution [i0], e) Monte Carlo method (N2 = 25,000). 

tracking it ceases, after which the procedure described is repeated. The ratio between the 
packet weight Nik which fell on the body k, and the total weight of the packets emitted from 
the body i and absorbed by the bodies of the system, Ni, is an estimate of the mean governing 
angular coefficient: 

O~k = N i k / N  i (i, k =  t, 2 . . . .  , n). (3)  

For particles absorbed by the system bodies, the conservation condition which takes the 
form 

n 

ekq) ih=l  ( i =  1, 2, . . . ,  n) 
k=l 

(4) 

after normalization and agrees with the known closedness condition for the mean governing 
angular coefficients [7] is satisfied. The coefficients obtained satisfy another compulsory 
condition -- reciprocity -- approximately and the experimental nature of the Monte Carlo method 

is manifest herein in particular. 

Let us apply the algorithm elucidated to the investigation of a system (Fig. i) consist- 
ing of a plane series of equidistant infinite parallel tubes or rods 1 set between parallel 
infinite planes 2 and 3. The radiation in such a system can be assumed planar and the par- 
ticle motion can be examined within the least element of system symmetry ABCDEF, which has 
the absolutely specular boundaries AF, BC, and DE. The governing angular coefficients ob- 
tained by two approximate methods, algebraic and Monte Carlo, are compared in Fig. 2. It is 
seen that the Monte Carlo method permits insertion of noticeable corrections to the value of 
these coefficients, ordinarily used in practice, in a number of cases. 

2. Mixed Formulation of the Problem for Diffuse Reflection from a Surface 

The temperatures of some number of zones (nl) and the densities of the resultant radia- 
tion in the remaining zones (n2) are given here. It is recommended in [7] to solve the mixed 
formulation of the problem by using ones instead of the true values of the reflection coeffi- 
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TABLE i. Influence of the Reflection Law on the Governing Angular Coefficient for 

Coaxial Cylinders with dl/d2 = 0.5 and sl = c2 = 0.5 

~eflection law from Inner Spec. Diff. Spec, Diff. 

i cylinder Outer spec. spec. diff. diff. 
! 

Value Exact 1.333 33311.600 1.600 
Coefficient ~12 Monte Carlo 1.333 333 ! 1.599 1.604 

cients in the integral equations of the type (I) for the n2 group of bodies, whereupon formal 
agreement is achieved between the integral equations to determine the governing angular co- 
efficients in the fundamental and mixed formulations of the problem and, therefore, agreement 
between the methods of their solution. Hence; the bodies of group n2 should be considered as 
totally diffuse reflectors in the Monte Carlo method. The method elucidated above remains 
unchanged in the remaining algorithm. 

The mixed formulation of the problem for the system shown in Fig~ 1 occurs, for example, 
for an absolutely black isothermal plane 2 and tubes 1 and absolutely non-heat-conducting 
masonry 3 [I0]. Its solution is represented in Fig. 3. It is seen that the magnitudes of the 
coefficients ~22 determined by the Monte Carlo method practically agree with the exact solu- 
tions (curves 1 and 2) and that the approximate values of the coefficients obtained by the 
light modeling and Monte Carlo methods are in good agreement for a relative tube spacing of 
1.5 and are somewhat worse for the spacings 2 and 2.833. 

3. Fundamental Formulation of the Problem for 
Specular Reflection from the Surfaces 

The appropriate replacement of the reflection law for specular bodies is made in the 
computational scheme of the Monte Carlo method described in Sec. i. 

As an illustration, let us examine the problem of specular reflection in a coaxial sys- 
tem of two infinite cylinders (Fig. 4). It follows from [8] that the formula 

~ = [eF i + eF I -- I] -i (5) 

is valid for the reduced emissivity of a system in the case of a specularly reflecting outer 
cylinder and a specularly or diffusely reflecting inner cylinder, and the formula 

ei~ = [eFt+ di/d 2 (e~ -I -- l)]-i (6) 

is valid for the case of a diffusely reflecting outer and specularly reflecting inner cylin- 
der. The latter expression agrees with the known Christiansen--Nusselt formula for diffuse- 
ly radiating and reflecting coaxial cylinders. The passage to the governing angular coeffi- 
cient is made by using the relationship [7]: 

~ = 81~2~12/~i2. (7) 

Presented in Table 1 are values of the coefficient ~12 computed by means of (5)-(7) and de- 
termined from an analysis of 15,000 histories. It is seen that the values of the coefficient 
obtained by the Monte Carlo method are close to its exact values and that the error in the 
method for a specular reflection law does not exceed its error for a diffuse reflection law. 

Points obtained by using the Monte Carlo method under the assumption of specular reflec- 
tion from all bodies of the system shown in Fig. 2 are superposed there. It is seen that a 
change in the reflection law results in some change in the magnitude of the governing angu- 
lar coefficients, up to 8%. The comparatively slight influence of the reflection law on the 
system characteristics was also noted in [12, 13]. 

4. Mixed Formulation of the Problem for Specular Reflection 
from the Surfaces 

7he solution of this problem by the Monte Carlo method is characterized by a different 
organization of the reflection process from the specular bodies of the different groups de- 
scribed in Sec. 2. The specular reflection process for the isothermal group of bodies nl pro- 
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Fig. 4. Coaxial system (a) and influ- 
ence of the emissivity of a specular 
surface on the governing angular coef- 
ficients of a coaxial system for d~/ 
d= = 0.5 and ~i = 0.5 (b) [curves are 
the exact solution ~cnording to (8); 
solid curve is ~2=; dashes are ~=i; 
points are Monte Carlo method (N2 ~ 
5000)] .  

o ~ ~t 

ceeds exactly the same as in the preceding formulation of the problem: part of the particles 
of the approaching packet, equal to the body emissivity, is absorbed by it, the rest follow 
in the specular reflection direction. The approaching packet is reflected entirely for the 
specular bodies of the group n2: diffusely with a probability equal to the body emissivity 
and specularly with a probability equal to the reflection coefficient of the body. 

The algorithm elucidated was verified for the system of coaxial cylinders (Pig. 4). Both 
cylinders were assumed specular: the inner, isothermal, and the outer, with a given value 
of the resultant radiation density. This system is described by four governing angular co- 
efficients, for which the expressions can be obtained by using (5), (7), the general solution 
of the mixed formulation of the problem [7], and also the closedness and reciprocity condi- 
tions for these coefficients. We finally have 

�9 11 = = = 1 
~22 = [eF l q - e ;  I (1 - - d l / d , ) -  1] dJ~. J (8 )  

The solution of the problem is represented in Fig. 4. Practical agreement between the re- 
sults of the Monte Carlo method and the exact results is observed. It is seen from Fig. 4, 
as well as from the structure of the algorithm, that the emissivity of a specularly reflect- 
ing body on which the resultant radiation density is given influences the governing angular 
coefficients. Therefore, the emissivity of a locally adiabatic body can act on the thermal 
characteristics of a system, which is not, as is known, observed for a diffuse reflection 
law. The influence of the emissivity of an adiabatic wall with Specular reflection on its 
temperature and heat transmission in the system is also noted in [14]. 

An investigation of the change in the geometric-optics coefficients upon replacement of 
the diffusely reflecting masonry 3 by specularly reflecting masonry is of practical interest 
for the configuration shown in Fig. i. The solution of this problem for the limit case of 
an adiabatic masonry, reflecting the incident radiation completely, is presented in Fig. 3. 
It is seen thatthe passage to specular reflection inserts some corrections to the value of 
the coefficient, which have a sign dependent on the relative tube spacing. Meanwhile, a 
change in the radiant heat perception of the tubes turns out to be small in this case -- up 
to 2%. 

5. Fundamental and Mixed Formulations of the Problem for Diffuse 
Radiation and Reflection of a Radiant Flux and a Uniform Reflected 
Flux Distribution over the Reflectin$ Body Surface 

Such a reflected flux distribution is modeled in the Monte Carlo method by means of an 
equally probable departure of the reflected part of the packet from any point of the reflect- 
ing body surface without a dependence on the point of incidence of this packet on the given 
body. The method in the rest of the algorithm corresponds to the description given in Secs. 
1 and 2. Such a model of the radiant heat-exchange process, extended over all the bodies of 
the system, corresponds completely to the description of this process by using the approxi- 
mate system of algebraic equations (2) and permits a strict check on the results obtained by 
the Monte Carlo method by means of the exact analytic solutions. As is seen from Fig. 3, the 
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points obtained by using the present scheme of the Monte Carlo method practically agree with 
the curve 2 which is a solution of (2). 

On the whole, the results represented in Fig. 3 indicate that the discrepancy between 
the values of the governing angular coefficient obtained by the Monte Carlo method and the 
exact solutions does not emerge beyond the maximum value of the error determined, as has been 
mentioned above, on the basis of the parameters of a normal probability distribution law. 

In conclusion, let us note that the algorithms of the Monte Carlo method elucidated for 
the considered problem formulations (except the last) permit obtaining values of the local 
governing angular coefficients. To do this, it is sufficient to fix the location of the 
radiating point on the system surface. 

NOTATION 

F, surface area; i,j,k, zone numbers; N, number of particles (histories); n, number of 
zones; ~, center of an area element; R, reflection coefficient; s, tube spacing; E, emissiv- 
ity; ~, ~, geometric and geometric-optics governing angular coefficients. 
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